WASTE UTILIZATION (ACRE) ### **CODE 633** #### MONTANA CONSERVATION PRACTICE SPECIFICATION / JOB SHEET UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE MT-CPA-223 Rev 08/01 ### MANURE NITROGEN CREDITING | PRODUCER | PLANNING DATE | | |---|---------------|-----| | ANIMAL (SPECIES) | | | | FORM (LIQUID OR SOLID) | | | | <u>NITROGEN</u> | | | | TOTAL AVAILABLE NITROGEN IN MANURE (Ibs. N/1,000 gal or Ibs. N/ton) ANALYSIS SOURCE: MT-CPA-227 MT-CPA-228 | | | | 1ST YEAR AFTER APPLICATION 1 | | (a) | | 2ND YEAR AFTER APPLICATION ¹ | | (a) | | 3RD YEAR AFTER APPLICATION 1 | | (a) | | APPLICATION RATE (1,000 gal/ac. or tons/ac.) 2 | | | | 1ST YEAR | | (b) | | 2ND YEAR | | (b) | | 3RD YEAR | | (b) | | NITROGEN APPLIED (lbs./ac) = (a) x (b) | | | | CROP YEAR (1ST YEAR) ³ | | | | CROP YEAR (2ND YEAR) | | | | CROP YEAR (3RD YEAR) | | | From Estimating Manure Nitrogen, Form MT-CPA-227, line 8, or Manure Test Nitrogen, Form MT-CPA-227, line 7. Manure application should be scheduled to meet plant needs using Nutrient Management Specification, Nutrient Checklist, Form MT-ECS-112. Indicate crop year when nutrients will be available. lbs./ac transfers to Nutrient Checklist, Form MT-ECS-112. (Nutrient Management Design and Specification.) UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE ### MANURE NITROGEN CREDITING continued TABLE 1. Nitrogen Availability and Loss as Affected by Method of Application | BROAD | CAST - INCORPOR | ATE 1 | INJEC | ΓΙΟΝ | SPRINKLE | |----------|-----------------|----------------------|-------|-------|----------| | <12 hrs. | <4 days | >4 days
% Total N | Sweep | Knife | | | 70 | 60 | % Total N | 00 | 05 | 75 | | 70 | 60 | อบ | 90 | 95 | 75 | ¹ Categories refer to the length of time between manure application and incorporation ### **PHOSPHORUS and POTASSIUM** NRCS, MT August 2001 Pounds per acre P_2O_5 and K_2O available to crops in the 1st year are found by multiplying P_2O_5 or K_2O in manure (from analysis or TABLE 2) times the selected application rate times 80% and 90%, respectively. **No 2nd or 3rd year credits are given.** If a manure analysis was obtained, list total phosphorus and total potassium, <u>as received</u>. (pounds/ton or pounds/1,000 gal.) Attach manure analysis. Be sure to enter elemental values only from manure analysis, i.e., P and K—not K₂O or P₂O₅. | | | TOTAL | Р | = | Ik | os. | TC | OTAL K | = | | lbs. | |--|--------|--------------------------------------|----------------|--------------------------------------|---------------------|----------------------|--|--------------|-------|-------------------------------|------------------------------| | FORM: | Lic | quid | _ | Solid _ | | | | | | | | | From manure | ana | lysis, calcu | late | lbs./ac. of P₂C |)₅ and | d K ₂ O a | pplied: | | | | | | | X | 2.3 | X | (1,000 GAL./A
OR TONS/A | | X | 0.8 | = | | (LBS./AC | .) | | | | P-P ₂ O ₅ Con | V. | APPLICATION (1,000 GAL./A) OR TONS/A | C. | | | | | P ₂ O ₅ | .) | | | X | 1.2
K–K₂O Conv | X
/. | APPLICATION | RATE | X | 0.9 | = | | K ₂ O | | | | - | | | e, determine o | of P ₂ (| | - | | | _ | | | Has manure b | een s | separated? | | YES 🗖 NO | | Appii | ed Form? | ? u L | IQUID | U so∟ | ADJUSTMENT FOR SEPARATION | | P lbs./day | ' [| Cu. Ft./Day. | X | Cu. Ft./Ton* | X | P-P | 2.3 ₂ O ₅ Conv. | = | | lbs./ton
00 Gallons | | | K lbs./day | L | Cu. Ft./Day. | X | Cu. Ft./Ton* | X | K-K | 1.2
C ₂ O Conv. | = | | lbs./ton
00 Gallons | ADJUSTMENT FOR
SEPARATION | | * Average volu | metric | weight for all | anima | ls. | | | | | | | | | Calculate lbs. | /ac. | of P ₂ O ₅ and | I K₂C | | | | | | | | | | (LBS./1,000 GAL.
OR LBS./TON)
P ₂ O ₅ Manure | X | Application R | ≀ate | (1,000 GAL./A
OR TONS/A | C.
C.) | x | 0.8 | = | (| LBS./AC.) | | | (LBS./1,000 GAL.
OR LBS./TON)
K ₂ O Manure | X | Application F | Rate | (1,000 GAL./A | | x | 0.9 | = | (| LBS./AC.) | | # WASTE UTILIZATION (ACRE) CODE 633 ### MONTANA CONSERVATION PRACTICE SPECIFICATION / JOB SHEET | | TED STATES DEPARTMENT OF AGRIC
TURAL RESOURCES CONSERV | | JG MAN | JIIRE NITE | റേദ | FN | | M | Г-СРА-227
Rev 08/01 | |----|---|-------------------------|-------------|--|---------|---------------------------|------|---------------------|------------------------------------| | 1. | Is this a beef open feedlot n | | _ | _ | | | | FEEDLO1 | MATING BEEF
MANURE
Worksheet | | | N _{excr} = | x | × | | _ = | | | | TOTAL LBS. N | | | N _{excr} = | X | × | |] = | | | | | | | N _{excr} = | X | × | |] = | | | | | | | ANIMAL TYPE NO. C | F ANIMALS DA | YS | LBS. N/DAY | _ | LBS. N | | | | | | Are liquids and solids sepa | rated? | ☐ NO | Manur | e For | m 🖵 LIQU | ID | SOLID | | | | Pounds N based on Separa | ted Manure Forms | | | | | | | | | | | LIQI | JIDS | SOLIDS | \neg | | | | | | | N _{excr} = X | = | LBS | S. N | LB | s. N | | | | | 2. | Estimate portion of nitroger
Manure Management System | | - | treatment usi | - | | | N_{retain} | | | 3. | Estimate inorganic nitroger application using TABLE 4. | n converted from m | anure nit | rogen (miner | alizat | ion) and beco | omin | g available | after | | | N _{conv} 1st year = | N _{conv} 2nd | l year = L | | | N _{conv} 3rd ye | ar = | | | | ١. | Estimate portion of nitroger | n remaining after d | enitrificat | tion using TAE | LE 5. | | | | | | | N _{deni} 1st year = | N _{deni} 2nd | | | | N _{deni} 3rd ye | ar = | | | | 5. | Estimate portion of nitroger (No application reduction is Application Method: | taken second or t | hird year | on of manure
s when manu
IF APPLICABLE): | re is a | applied first y | ear | | AYS | | 6. | Calculate nitrogen (N0 ₃) ava | | | | | | | - | | | | N _{excr} X N _{retair} | X N _{conv} 1st | yr. X | N _{deni} 1st yr. | X | N _{appl} 1st yr. | = | N _{avail} | | | | X | X | X | | X | | = | | | | | х | x | x | | X | | = | | | | | х | x | x | | Χ | | = | | | | 7. | Compute total pounds of m Solid Form (USE FOR COMBINE X | ED SLURRY/SEMI-SOLID | FORMS AND | SEPARATED SOLI | - | w) | Ton | s of Manure | | | | NO. OF ANIMALS DAYS | CU. FT./D/ | | CU. FT./TON* | | | | | | | | Liquid Form (USE FOR SEPAR. | | <u>')</u> | | | | | | | | | NO. OF ANIMALS DAYS | CU. FT./D/ | AY / | GAL./CU. FT* | = | | 1,00 | 0 Gallons o | f Manure | | | * Average volumetric weight for | aii animais. | | | | | | | | | 3. | Calculate total pounds of av | vailable nitrogen pe | er ton of I | manure produ | ıced. | | | | | | | #AVAIL. N 1ST YR TONS OR G | SALS. | | Lbs. Available | N/to | n or N/1,000 G | Sal. | | | | | | = | | Lbs. Available | N/to | n or N/1,000 G | Sal. | | | #AVAIL. N 2ND YR TONS OR GALS. Lbs. Available N/ton or N/1,000 Gal. (LBS./AC.) K_2O UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE ### **ESTIMATING BEEF FEEDLOT MANURE PRODUCTION** | ANIMAL TYPE
COW, FEEDER,
BULL, CALF, HEIFER | NUMBER OF
ANIMALS | AVERAGE
WEIGHT | NUMBER OF DAYS
IN LOT/YEAR | N
LBS/DAY/1,000# | P
LBS/DAY/1,000# | K
LBS/DAY/1,000# | |---|-------------------------------------|-----------------------------|-------------------------------|-----------------------------|-------------------------------|----------------------------| | , , | | | | , | , | , | ANIMAL TYPE
COW, FEEDER,
BULL, CALF, HEIFER | EXCRETED
VOLUME
(CU. FT./DAY) | TOTAL N
(LBS./YR) | TOTAL P
(LBS./YR) | TOTAL K
(LBS./YR) | TOTAL SOLIDS
(CU. FT./YR.) | TOTAL SOLIDS
(TONS/YR.) | TOTAL | | | | | | | | TOTAL | | | | | | | | | | | | | | | | , | X 2.3 | TONS | | 0.8 = | (LBS./AC.) | | | LBS P/TON | $P-P_2O_5$ Conv. | Application | | - | P ₂ O ₅ | | TONS/AC. Application Rate X 0.9 LBS K/TON X 1.2 K-K₂O Conv. # WASTE UTILIZATION (ACRE) CODE 633 ### MONTANA CONSERVATION PRACTICE SPECIFICATION / JOB SHEET UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE MT-CPA-228 Rev 01/02 ### **MANURE TEST NITROGEN** | | From mani | | | | | | | | | | |-----------------------------|---|--|---|-------------------------------|--|-----------------------|---|-----------------------|-------------------------|--| | | Attach mar | | | tal nit | trogen, as rec | eived, | (pounds/ton o | r poi | unds/1,000 g | gal.). | | | | QUID | SOLI |) | | | TOTAL N | = | | BS. | | | Estimate in application | | | conve | rted from ma | nure n | itrogen (miner | aliza | tion) and be | coming available after | | ١ | N _{conv} 1st ye | ar = | | | N _{conv} 2nd ye | ear = [| | | N _{conv} 3rd y | year = | | . E | Estimate p | ortion | of nitrogen | remai | ning after der | nitrific | ation using TAE | BLE 5. | i | | | 1 | N _{deni} 1st yea | ar = | | | N _{deni} 2nd ye | ar = [| | | N _{deni} 3rd y | /ear = | | (Λ
Α _Ι | lo applicat
pplication N | tion real | duction is ta | ken s | econd or thir | <i>d year</i>
Time | | e is a | pplied first | N _{appl} 1st year = year only). HOURS OR DAYS | | . (| Calculate n
N _{test} | nitroge
X | n (N0₃) avail
N _{conv} 1st yr | | ^f or plant uptal
N _{deni} 1st yr. | ke for
X | each year.
N _{appl} 1st yr. | _ | $N_{ m avail}$ | | | Г | rtest | X | I CONVIST Y | , x | Itaeni ist yi. | X | Trappi 15t yr. | = | • avail | LBS. N 1ST YEAR | | \vdash | | ł | | | | | | _ | | | | | | X | | X | | X | l l | = | | LBS. N 1ST YEAR | | | | | | X
nure p | | | | =
2) / | fultiple anin | LBS. N 1ST YEAR LBS. N 1ST YEAR nal types can be entered. | | С | ls this a be | X otal poseef oper | | X
nure p
anage | produced, as of the ement system CU. FT./DAY | X
excret | _ | = | fultiple anin | LBS. N 1ST YEAR | | C | Is this a be | X otal poseef oper | en feedlot m
Form Analys | X
nure p
anage | ement system | X
excret | YES 🛄 | =
2) / | fultiple anin | LBS. N 1ST YEAR | | C | Is this a be | X otal po eef ope Solid | en feedlot m
Form Analys | X
nure p
anage
s: | ement system | X
excret
? [| YES CU. FT./TON* | =
2) //
NO | fultiple anin | LBS. N 1ST YEAR nal types can be entered. | | C | Is this a be | X otal poseef oper Solid | en feedlot m
Form Analys | X
nure p
anage
s: | ement system | X
excret
? [| CU. FT./TON* | =
2) /\(\) NO
= | fultiple anin | LBS. N 1ST YEAR nal types can be entered. TONS OF MANURE | | C | Is this a be
omplete for
D. OF ANIMALS | X otal poseef oper Solid S X X X | en feedlot m
Form Analys | x nure panage s: | ement system | X
excret
? [| CU. FT./TON* 32 32 | = NO = = = | fultiple anin | LBS. N 1ST YEAR nal types can be entered. TONS OF MANURE TONS OF MANURE | | C | Is this a be
omplete for
D. OF ANIMALS | x cotal poseef oper Solid s X X X X | en feedlot m
Form Analys
DAYS | x nure panage s: | ement system | X
excret
? [| CU. FT./TON* 32 32 | = NO = = = | fultiple anin | LBS. N 1ST YEAR nal types can be entered. TONS OF MANURE TONS OF MANURE | | C | Is this a be
omplete for
D. OF ANIMALS
omplete for | x cotal poseef oper Solid s X X X X | en feedlot m Form Analys DAYS I Form Analys | x nure panage s: | CU. FT./DAY | X
excret
? [| CU. FT./TON* 32 32 32 32 | = NO = = = | fultiple anin | LBS. N 1ST YEAR nal types can be entered. TONS OF MANURE TONS OF MANURE | | C | Is this a be
omplete for
D. OF ANIMALS
omplete for | x cotal poseef oper Solid s X X X X x Liquid s | en feedlot m Form Analys DAYS I Form Analys | X nure panages: X X X X Sis: | CU. FT./DAY | X
excret
? [| CU. FT./TON* 32 32 32 32 GAL./CU. FT.* | = 2) /\(\) NO = = = = | fultiple anin | LBS. N 1ST YEAR nal types can be entered. TONS OF MANURE TONS OF MANURE TONS OF MANURE | ^{*} Average volumetric weight for all animals. ### **Specification MT633-6** NO INFORMATION ## WASTE UTILIZATION (ACRE) CODE 633 ### MONTANA CONSERVATION PRACTICE SPECIFICATION / JOB SHEET TABLE 2. Daily Manure Production (AS EXCRETED) | | SIZE | | | | NUTRIENT CONTENT | | |--------------|------|-------------|-------|--------------|------------------|--------------| | ANIMAL | LBS. | CU. FT./DAY | WATER | N LBS. / DAY | P LBS. / DAY | K LBS. / DAY | | | | | | | | | | Dairy Cow | 150 | 0.190 | 87 | 0.060 | 0.01000 | 0.04000 | | - | 250 | 0.320 | 87 | 0.100 | 0.02000 | 0.07000 | | | 500 | 0.660 | 87 | 0.200 | 0.03600 | 0.14000 | | | 1000 | 1.300 | 87 | 0.410 | 0.07300 | 0.27000 | | | 1400 | 1.850 | 87 | 0.570 | 0.10200 | 0.38000 | | Beef | <750 | 0.930 | 88 | 0.300 | 0.10000 | 0.20000 | | | 1000 | 0.950 | 88 | 0.310 | 0.11000 | 0.24000 | | | 1250 | 1.000 | 88 | 0.330 | 0.12000 | 0.26000 | | Swine | | | | | | | | Nursey | 35 | 0.038 | 90 | 0.016 | 0.00520 | 0.01000 | | Growing | 65 | 0.070 | 90 | 0.029 | 0.00980 | 0.02000 | | Finish | 150 | 0.160 | 90 | 0.068 | 0.02200 | 0.04500 | | | 200 | 0.220 | 90 | 0.090 | 0.03000 | 0.05900 | | Gestate | 275 | 0.150 | 90 | 0.062 | 0.02100 | 0.04000 | | Sow & litter | 375 | 0.540 | 90 | 0.230 | 0.07600 | 0.15000 | | Boar | 350 | 0.190 | 90 | 0.078 | 0.02600 | 0.05100 | | Poultry | | | | | | | | Layers | 4 | 0.0035 | 75 | 0.0029 | 0.00110 | 0.00120 | | Broilers | 2 | 00.024 | 75 | 0.0024 | 0.00054 | 0.00075 | | Turkey | 10 | 0.0069 | 75 | 0.0074 | 0.00280 | 0.00280 | TABLE 3. Nitrogen Remaining After Storage, Treatment, and Application | MANURE MANAGEMENT SYSTEM | PORTION REMAINING (%) | |---|-----------------------| | Oxidation ditch, effluent storage | 20 to 30 | | Anaerobic lagoon or storage pond after 50% dilution | 10 to 30 | | Open lot surface storage | 40 to 60 | | Aerobic lagoon | 45 to 55 | | Roofed storage or manure pack | 60 to 75 | | Shallow, open, manure storage pond | 70 to 80 | | Stacking facility | 65 to 75 | | Deep, open, manure storage pond | 70 to 80 | | Liquid manure tank, covered | 80 to 90 | # WASTE UTILIZATION (ACRE) CODE 633 ### MONTANA CONSERVATION PRACTICE SPECIFICATION / JOB SHEET TABLE 4. Organic Waste Decay Rate (MINERALIZATION—SOIL-INCORPORATED "N" CONVERTED TO INORGANIC "N") * | TYPE OF WASTE | 1ST YEAR
AFTER APPLICATION
% AVAILABLE | 2ND YEAR
AFTER APPLICATION
% AVAILABLE | 3rd year
after application
% available | |------------------------------|--|--|--| | Fresh poultry manure | 90 | 2 | 1 | | Fresh swine manure | 75 | 4 | 2 | | Fresh cattle manure | 70 | 4 | 2 | | Fresh sheep and horse manure | 60 | 6 | 2 | | Liquid manure, covered tank | 65 | 5 | 3 | | Liquid manure, storage pond | 65 | 5 | 3 | | Solid manure, stack | 60 | 6 | 2 | | Solid manure, open pit | 55 | 5 | 2 | | Manure pack, roofed | 50 | 5 | 2 | | Manure pack, open feedlot | 45 | 5 | 3 | | Storage pond effluent | 40 | 6 | 3 | | Oxidation ditch effluent | 40 | 6 | 3 | | Aerobic lagoon effluent | 40 | 6 | 3 | | Anaerobic lagoon effluent | 30 | 6 | 3 | | Digested sewage sludge | 35 | 5 | 2 | ^{*} If irrigated, reduce 1st year mineralization by 5%. **TABLE 5. Nitrogen Remaining After Denitrification** | SOIL DRAINAGE CLASS | REMAINING INORGANIC "N"
% | |---|-------------------------------------| | Excessively or somewhat excessively drained | 97 | | Well drained | 90 | | Moderately well drained | 85 | | Somewhat poorly drained | 80 | | Poorly drained | 70 | | Very poorly drained | 60 |